martes, 14 de junio de 2011

CAPACIDAD ELÉCTRICA


En electromagnetismo y electrónica, la capacidad o capacitancia eléctrica es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para un potencial eléctrico dado. El dispositivo más común que almacena energía de esta forma es el condensador. La relación entre la diferencia de potencial (o tensión) existente entre las placas del condensador y la carga eléctrica almacenada en éste, se describe mediante la siguiente ecuación:
{C} = {Q \over V}
donde:
Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del condensador considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante dieléctrica del material no conductor introducido, mayor es la capacidad.
En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior.
 {i} = \frac {dQ}{dt} = {C} \frac {dV}{dt}
Donde i representa la corriente eléctrica, medida en amperios.

Energía


La energía almacenada en un condensador, medida en julios, es igual al trabajo realizado para cargarlo. Consideremos un condensador con una capacidad C, con una carga +q en una placa y -q en la otra. Para mover una pequeña cantidad de carga dq desde una placa hacia la otra en sentido contrario a la diferencia de potencial se debe realizar un trabajo dW:
 \mathrm{d}W = \frac{q}{C}\,\mathrm{d}q
donde
W es el trabajo realizado, medido en julios;
q es la carga, medida en coulombios;
C es la capacitancia, medida en faradios.
Es decir, para cargar un condensador hay que realizar un trabajo y parte de este trabajo queda almacenado en forma de energía potencial electrostática. Se puede calcular la energía almacenada en un condensador integrando esta ecuación. Si se comienza con un condensador descargado (q = 0) y se mueven cargas desde una de las placas hacia la otra hasta que adquieran cargas +Q y -Q respectivamente, se debe realizar un trabajo W:
 W_{carga} = \int_{0}^{Q} \frac{q}{C} \, \mathrm{d}q = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2 = W_{almacenada}
Combinando esta expresión con la ecuación de arriba para la capacidad, obtenemos:
 W_{almacenada} = \frac{1}{2} C V^2 = \frac {1}{2} \frac {Q^2}{C}
donde
  • W es la energía, medida en julios;
  • C es la capacidad, medida en faradios;
  • V es la diferencia de potencial, medido en voltios;
  • Q es la carga almacenada, medida en coulombios.

Condensador eléctrico


En electricidad y electrónica, un condensador es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separadas por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidas a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada).




Funcionamiento


La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1voltio, éstas adquieren una carga eléctrica de 1 culombio.
Archivo:Condensators.JPG
La capacidad de 1 faradio es mucho más grande que la de la mayoría de los condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6, nano- nF = 10-9o pico- pF = 10-12 -faradios. Los condensadores obtenidos a partir de supercondensadores (EDLC) son la excepción. Están hechos de carbón activado para conseguir una gran área relativa y tienen una separación molecular entre las "placas". Así se consiguen capacidades del orden de cientos o miles de faradios. Uno de estos condensadores se incorpora en elreloj Kinetic de Seiko, con una capacidad de 1/3 de Faradio, haciendo innecesaria la pila. También se está utilizando en los prototipos de automóviles eléctricos.
El valor de la capacidad de un condensador viene definido por la siguiente fórmula:
C=\frac{Q_1}{V_1-V_2} = \frac{Q_2}{V_2-V_1}
en donde:
C: Capacitancia
Q1: Carga eléctrica almacenada en la placa 1.
V1 − V2: Diferencia de potencial entre la placa 1 y la 2.
Nótese que en la definición de capacidad es indiferente que se considere la carga de la placa positiva o la de la negativa, ya que
Q_2 = C(V_2-V_1) = -C(V_1-V_2) = -Q_1\,
aunque por convenio se suele considerar la carga de la placa positiva.
En cuanto al aspecto constructivo, tanto la forma de las placas o armaduras como la naturaleza del material dieléctrico son sumamente variables. Existen condensadores formados por placas, usualmente de aluminio, separadas por airemateriales cerámicosmicapoliésterpapel o por una capa de óxido de aluminio obtenido por medio de la electrólisis.


Archivo:Condensador.png


DIFERENCIA DE POTENCIAL ELÉCTRICO

Archivo:Trabajo2.PNG
El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde la referencia hasta ese punto, dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde la referencia hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por:
V = \frac{W}{q} \,\!
Considérese una carga puntual de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba q_0 \,\! localizada a una distancia r de una carga q, la energía potencial electrostática mutua es:
U = K\frac{ q_0 q}{r} \,\!
De manera equivalente, el potencial eléctrico es V = \frac{U}{q_0} \,\! = K\frac{q}{r} \,\!

Diferencia de Potencial eléctrico

Considérese una carga de prueba positiva q_0 \,\! en presencia de un campo eléctrico y que se traslada desde el punto A al punto B conservándose siempre en equilibrio. Si se mide el trabajo que debe hacer el agente que mueve la carga, la diferencia de potencial eléctrico se define como:
V_B - V_A= \frac {W_{AB}}{q_0} \,\!
El trabajo W_{AB} \,\! puede ser positivo, negativo o nulo. En estos casos el potencial eléctrico en B será respectivamente mayor, menor o igual que el potencial eléctrico en A. La unidad en el SI para la diferencia de potencial que se deduce de la ecuación anterior es Joule/Coulomb y se representa mediante una nueva unidad, el voltio, esto es: 1 voltio = 1 joule/coulomb.
Un electronvoltio (eV) es la energía adquirida para un electrón al moverse a través de una diferencia de potencial de 1 V, 1 eV = 1,6x10-19 J. Algunas veces se necesitan unidades mayores de energía, y se usan los kiloelectronvoltios (keV), megaelectronvoltios (MeV) y los gigaelectronvoltios (GeV). (1 keV=103 eV, 1 MeV = 106 eV, y 1 GeV = 109 eV).
Aplicando esta definición a la teoría de circuitos y desde un punto de vista más intuitivo, se puede decir que el potencial eléctrico en un punto de un circuito representa la energía que posee cada unidad de carga al paso por dicho punto. Así, si dicha unidad de carga recorre un circuito constituyendóse en corriente eléctrica, ésta irá perdiendo su energía (potencial o voltaje) a medida que atraviesa los diferentes componentes del mismo. Obviamente, la energía perdida por cada unidad de carga se manifestará como trabajo realizado en dicho circuito (calentamiento en una resistencia, luz en una lámpara, movimiento en un motor, etc.). Por el contrario, esta energía perdida se recupera al paso por fuentes generadoras de tensión. Es conveniente distinguir entre potencial eléctrico en un punto (energía por unidad de carga situada en ese punto) y corriente eléctrica (número de cargas que atraviesan dicho punto por segundo).
Usualmente se escoge el punto A a una gran distancia (en rigor el infinito) de toda carga y el potencial eléctrico V_A \,\! a esta distancia infinita recibe arbitrariamente el valor cero. Esto permite definir el potencial eléctrico en un punto poniendo V_A =0 \,\! y eliminando los índices:
V=\frac {W}{q_0} \,\!
siendo W \,\! el trabajo que debe hacer un agente exterior para mover la carga de prueba q_0 \,\! desde el infinito al punto en cuestión.
Obsérvese que la igualdad planteada depende de que se da arbitrariamente el valor cero al potencial V_A \,\! en la posición de referencia (el infinito) el cual hubiera podido escogerse de cualquier otro valor así como también se hubiera podido seleccionar cualquier otro punto de referencia.
También es de hacer notar que según la expresión que define el potencial eléctrico en un punto, el potencial en un punto cercano a una carga positiva aislada es positivo porque debe hacerse trabajo positivo mediante un agente exterior para llevar al punto una carga de prueba (positiva) desde el infinito. Similarmente, el potencial cerca de una carga negativa aislada es negativo porque un agente exterior debe ejercer una fuerza (trabajo negativo en este caso) para sostener a la carga de prueba (positiva) cuando esta (la carga positiva) viene desde el infinito.
Por último, el potencial eléctrico queda definido como un escalar porque W \,\! y q_0 \,\! son escalares.
Tanto W_{AB} \,\! como V_B-V_A \,\! son independientes de la trayectoria que se siga al mover la carga de prueba desde el punto A hasta el punto B. Si no fuera así, el punto B no tendría un potencial eléctrico único con respecto al punto A y el concepto de potencial sería de utilidad restringida.

Es posible demostrar que las diferencias de potencial son independientes de la trayectoria para el caso especial representado en la figura. Para mayor simplicidad se han escogido los puntos A y B en una recta radial.
Una carga de prueba puede trasladarse desde A hacia B siguiendo la trayectoria I sobre una recta radial o la trayectoria II completamente arbitraria.
La trayectoria II puede considerarse equivalente a una trayectoria quebrada formada por secciones de arco y secciones radiales alternadas. Puesto que estas secciones se pueden hacer tan pequeñas como se desee, la trayectoria quebrada puede aproximarse a la trayectoria II tanto como se quiera. En la trayectoria II el agente externo hace trabajo solamentea lo largo de las secciones radiales, porque a lo largo de los arcos, la fuerza \vec F \,\! y el corrimiento \vec dl \,\! son perpendiculares y en tales casos \vec F \, d\vec l \,\! es nulo. La suma del trabajo hecho en los segmentos radiales que constituyen la trayectoria II es el mismo que el trabajo efectuado en la trayectoria I, porque cada trayectoria está compuesta del mismo conjunto de segmentos radiales. Como la trayectoria II es arbitraria, se ha demostrado que el trabajo realizado es el mismo para todas las trayectorias que unen A con B.
Aun cuando esta prueba sólo es válida para el caso especial ilustrado en la figura, la diferencia de potencial es independiente de la trayectoria para dos puntos cualesquiera en cualquier campo eléctrico. Se desprende de ello el carácter conservativo de la interacción electrostática el cual está asociado a la naturaleza central de las fuerzas electrostáticas.
Para un par de placas paralelas en las cuales se cumple que {V}={Ed} \,\!, donde d es la distancia entre las placas paralelas y E es el campo eléctrico constante en la región entre las placas.

Voltímetro


Un voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico.


CLASIFICACIÓN:




Voltímetros electromecánicos

Estos voltímetros, en esencia, están constituidos por un galvanómetro cuya escala ha sido graduada en voltios. Existen modelos paracorriente continua y para corriente alterna.


Archivo:Voltímetro.png
 

Voltímetros electrónicos

Añaden un amplificador para proporcionar mayor impedancia de entrada (del orden de los 20 mega ohmios) y mayor sensibilidad. Algunos modelos ofrecen medida de "verdadero valor eficaz" para corrientes alternas. Los que no miden el verdadero valor eficaz es porque miden el valor de pico a pico, y suponiendo que se trata de una señal sinusoidal perfecta, calculan el valor eficaz por medio de la siguiente fórmula:
V_\mbox{ef} = \frac{V_\mbox{pp}} {2 \sqrt2}

Voltímetros vectoriales

Se utilizan con señales de microondas. Además del módulo de la tensión dan una indicación de su fase. Se usa tanto por los especialistas y reparadores de aparatos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general. Son dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.

Voltímetros digitales

Dan una indicación numérica de la tensión, normalmente en una pantalla tipo LCD. Suelen tener prestaciones adicionales como memoria, detección de valor de pico, verdadero valor eficaz (RMS), autorrango y otras funcionalidades.
El sistema de medida emplea técnicas de conversión analógico-digital (que suele ser empleando un integrador de doble rampa) para obtener el valor numérico mostrado en una pantalla numérica LCD.
El primer voltímetro digital fue inventado y producido por Andrew Kay de "Non-Linear Systems" (y posteriormente fundador de Kaypro) en 1954.

UTILIZACIÓN:

Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo; esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue el momento necesario para el desplazamiento de la aguja indicadora.

En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.
En la Figura 1 se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.
En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.
A continuación se ofrece la fórmula de cálculo de la resistencia serie necesaria para lograr esta ampliación o multiplicación de escala:
 R_{\mbox{a}} = R_{\mbox{v}} (N-1)\,,
donde N es el factor de multiplicación (N≠1)
Ra es la Resistencia de ampliación del voltímetro
Rv es la Resistencia interna del voltímetro








FLUJO DE CAMPO ELÉCTRICO


FLUJO DE CAMPO ELÈCTRICO

El flujo (denotado como Φ) es una propiedad de cualquier campo vectorial referida a una superficie hipotética que puede ser cerrada o abierta. Para un campo eléctrico, el flujo (ΦE) se mide por el número de líneas de fuerza que atraviesan la superficie.
Para definir al flujo eléctrico con precisión considérese la figura, que muestra una superficie cerrada arbitraria dentro de un campo eléctrico.
La superficie se encuentra dividida en cuadrados elementales ΔS, cada uno de los cuales es lo suficientemente pequeño como para que pueda ser considerado plano. Estos elementos de área pueden ser representados como vectores \vec {\Delta S} , cuya magnitud es la propia área, la dirección es normal a la superficie y el sentido hacia afuera.
En cada cuadrado elemental también es posible trazar un vector de campo eléctrico \vec E . Ya que los cuadrados son tan pequeños como se quiera, E puede considerarse constante en todos los puntos de un cuadrado dado.
\vec E  y \vec {\Delta S}  caracterizan a cada cuadrado y forman un ángulo θ entre sí y la figura muestra una vista amplificada de dos cuadrados.
El flujo, entonces, se define como sigue:
(1){\Phi}_E=\sum \vec E \cdot \Delta \vec S
O sea:
(2){\Phi}_E=\oint_{S} \vec E\cdot d\vec s


Archivo:Electric Flow in an Ellipsoid.svg

Carl Friedrich Gauss


Johann Carl Friedrich Gauss (Gauß) ▶/i (30 de abril de 1777Brunswick – 23 de febrero de 1855Göttingen), fue un matemático,astrónomo y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, lageometría diferencial, la geodesia, el magnetismo y la óptica. Considerado "el príncipe de las matemáticas" y "el matemático más grande desde la antigüedad", Gauss ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la Historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos.
Gauss fue un niño prodigio, de quien existen muchas anécdotas acerca de su asombrosa precocidad siendo apenas un infante, e hizo sus primeros grandes descubrimientos mientras era apenas un adolescente. Completó su magnum opusDisquisitiones Arithmeticae a los veintiún años (1798), aunque no sería publicado hasta 1801: Fue un trabajo fundamental para que se consolidara la teoría de los números y ha moldeado esta área hasta los días presentes.